
/ NASA Contractor Report 181748

ICASE REPORT NO. 88-57 K

ICASE
M A MULTISTAGE LINEAR ARRAY ASSIGNMENT PROBLEM

I OTIC
EL EB 1E

D. M. Nicol S IECTf
D. R. Shier D
R. K. Kincaid

D. S. Richards

Contract No. NASI-18I07, NASI118605, AFOSR 88-0117
November 1988

INSTITUTE FOR CO)TUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Rebearch Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

I IhBUyT10 STAE~p AI~~II'~S/~ Approved for pubc 1 eeo1

~ andDiatribution Unlrixnted

Spae Adrvwrstrut'on
-*Rft=Mh C.

HaWnw, Iftuii 23665

89 2'102

A Multistage Linear Array Assignment Problem

David M. Nicol * D.S. Richards

D.R. Shier University of Virginia
R.K. Kincaid

The Collcge of William and Mary

Abstract

Implementation of certain algorithms on parallel computing architectures can in-
volve partitioning contiguous elements into a fixed number of groups, each of which
is to be handled by a single processor. It is desired to find an assignment of elements
to processors that minimizes the sum of the maximum workloads experienced at each
stage. This problem can be viewed as a multi-objective network optimization problem.
Polynomiaily- bounded algorithms are developed for the case of two-stages, whereas the
associated decision problem (for an arbitrary number of stages) is shown to be NP-
complete. Heuristic procedures are therefore proposed and analyzed for the general
problem. Computational experience with one of the exact problems, incorporating
certain pruning rules, is presented for a variety of test problems. Empirical results also,
demonstrato that one of the heuristic procedures is especially effective in practice. < (*)

'This research was supported in part by the National Aeronautics and Space Administration under
NASA Contract Nos. NAS1-18107 and NAS1-18605 and by the Air Force Office of Scientific Research
under Contract No. AFOSR 88-0117 while the first author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

i

1. Introduction

A number of problems in image processing, scientific computing, and numerical optimi-

zation are well suited for solution using parallel or pipelined computations. Typically there are far

fewer processors than elements to be processed, and so some natural aggregation of elements is

required for partitioning the workload among the processors. For example, a spatial aggregation

of elements might be appropriate for image processing, whereas an aggregation based on contig-

uous columns might be appropriate for various matrix computations. The focus of the present

paper is on this latter type of aggregation, in which a linear ordering of elements is imposed and an

optimal partitioning of the elements is required that achieves a balanced workload among the

processors.

One specific motivating example arises in studying parallel implementations of the

Cholesky decomposition of a banded positive definite matrix A, as proposed by O'Hallaron

(1988). The standard Cholesky decomposition A = LL T can be computed in a serial manner using

two alternating stages. The first stage carries out an appropriate normalization of the current

column: this information is then passed on to other columns during the second stage. In

O'Hallaron's pipelined implementation, a set of contiguous columns (defined by the matrix

bandwidth) is allocated to a smaller number of processors. Again, the Cholesky scheme consists

of alternating stages of normalization and updating sets of columns. Because of the need for global

synchronization at the end of each stage, the computational speed is limited by the processor

having the maximum workload. The overall speed is then determined by the sum of the maximum

.rk!oads at each stage, and an allocation of columns to processors that minimizes this sum is

d-,sired.

Another specific motivating example occurs in the parallel solution of one-dimensional fluid

flow problems using irregular grid hierarchies (see Berger and Oliger 1984). Nonuniform

gridding is used to concentrate computational effort in domain regions where the solution changes

rapidly (as from a shock or turbulence). In this grid hierarchy various uniformly spaced fine grids

which do not span the entire domain are superimposed onto a uniformly spaced coarse grid which

2

does. The "stages" of such problems correspond to the numerical integration of grids with a

common spatial separation; inter-stage synchronization is used to enforce data dependencies

between solutions at differing grid levels. The entire computation is parallelized by dividing the

domain (or equivalently, the coarse grid points) among the given processors. The linear ordering

of these grid points reflects the natural constraint that grid point updates depend on contiguous grid

values. As in the Cholesky decomposition, the processor having the heaviest workload at a given

stage limits the progress of the entire system. The sum of the maximum workloads at each stage

again measures the computation's execution speed.

The following section provides a mathematical formulation of the general problem of

minimizing an overall objective based on the sum of maximum workloads. This problem is termed

the Multistage Linear Array Assignment (MLAA) problem. It is shown in Section 5 that the

associated decision problem is NP-complete for a general number (r) of stages. Thus, we first

concentrate on providing efficient polynomial algorithms for the MLAA when r = 2. Two separate

approaches are developed (in Sections 3 and 4) for the two-stage problem. Section 6 discusses

how one of these algorithms can be generalized in a natural way to r stages, and it also develops

heuristic procedures for an arbitrary number of stages. Computational experience with the exact

:ind heuristic algorithms is presented in Section 7.

2. Formulation

It is supposed that n elements or modules are given, each of which has two associated

nonrnegative processing times xr Y1 >0 (i = 1 ..., n). There are also available p processors,

p n. each of which is capable of handling an arbitrary number of modules. We consider a

partition of the set of modules { 1, 2. ..., n} into p intervals I, 1, ... , lp where each interval

consists of consecutive modules {t, t+ 1 ..., t+k 1, k 2 0. A (quite reasonable) assumption made

here is that the processing time for each interval is additive in the processing times of its component

modules:

3

E(Xk, YUi y.
ke I. ke IJ I

The objective here is to select intervals I, Ip for the p processors to minimize z(I ... p),

where

z(I, Ip) = [max x(l.)I + [max y(l.)] (1)
j J1

The extension to r processing times (stages) is immediate.

This problem can be formulated on an acyclic network G = (N, E), where the node set

N = {0, 1, ..., n} and the edge set E consists of all edges (i, j) with i < j. Each edge (i, j) has the

associated weights x(i, j) and y(i, j), defined by

x(i,j) = Xk' y(i,j)= Yk (2)
i<k<_j i<kj

Notice that G has m = O(n2) edges.

It is easily seen that our two-stage problem is precisely that of finding in G a path of exactly

p edges from node 0 to node n that minimizes the sum of the maximum edge weight in each

component. This "min-sum-max" problem is a bicriterion path problem that has not been

extensively studied, although related bicriterion path problems have been investigated. Warburton

(1 985) considers the 'min-max-sum" problem and demonstrates that it is NP-hard for r = 2

components. The problem is strongly NP-hard for general r. A number of authors (Hansen 1980,

I 1enig 1985) have studied the problem of generating "efficient" (Pareto optimal) paths in bicriterion

net% orks, using a variety of path length measures. The most pertinent measure of path length to

oUr present study is the maximum edge weight for each criterion. A path is termed efficient when

no other admissible path has a smaller value for one criterion without a larger value for the other.

Polynomial-time algorithms for this "minmax-minmax" bicriterion path problem have been given

by Hansen (1980), Berman et al. (1987), and Warburton (1987). Other related work is presented

by Bokhari (1989), relative to the single-objective problem of minimizing the mqximum of the

maximum x-weight and the additive y-weight, in a doubly weighted network. While the problem

4

studied here is significantly different from these other problems, certain common solution

strategies exist that have been exploited in our algorithmic development of the next sections.

Before discussing algorithms for the two-stage case, it is worthwhile to point out certain

difficulties intrinsic to the problem of minimizing the objective function (1). Consider the two-

stage problem with processing times xi, yi given in Table 1, with p = 3. The (unique) optimal

partition for this problem has II = 0I }, 12 = {2}, 13 = {3, 41. However, in the subproblem

defined over the modules 12 U 13 = {2, 3, 4}, the optimal partition for p = 2 processors uses

I, = t 2, 3} and 13 = {4 }. Thus the principle of optimality required for a dynamic programming

formulation does not hold. In other words, optimal solutions cannot be found simply by extending

(in the best possible way) the known optimal solutions for smaller subproblems.

Table 1

A Three Processor Example that Violates the Optimality Principle

Module (i)

2 3 4

xi 6 6 4

Yi 11 3 5 6

3. The Labeling Algorithm

In this section a labeling algorithm is developed to solve the two-stage MLAA problem (I).

This algorithm works directly on the network G introduced in the previous section and exploits the

fact that G is acyclic. Since the principle of optimality cannot be invoked for this problem to

extend optimal paths for a subproblem, we maintain at each node j E N several sets of candidate
2

paths. That is, asso,-iated with each node j will be certain sets L(j;k) of vectors in R . The set

5

L(j;k) = {(xI, y1), (x2, y2)9 (xt, yt)} corresponds to "path length vectors" for paths P from

node 0 to node j having exactly k edges. In this context, the first component x1 of such a path

vector is simply the maximum x-weight of path P, and the second component yS is the maximum

y-weight of path P.

To express these notions more precisely, let u, v e R2 be vectors with u = (u1, u2) and

v = (v, v,), and define the product u 0 v by

u 0 v = (max(u l, vY), max(u 2, v2))

In this notation, the path length vector for path P is given by
len(P) = ®1I (x(i, j), y(i, j)),

(i,j)EP

and the label LO; k) on node j is given by

L(j;k) = {len(P): P is a path from 0 toj with II P1 kI. (3)

Here x(i, j) and y(i, j) are as defined in (2), and 11P11 is used to denote the cardinality (number of

edges) of path P. It will also be convenient to extend the definition of 0 to sets of vectors: if
R2

SzR andve R then

S0v={w0v:wre S}.

Throughout. we will maintain sets of path vectors for each node. At the end of the

process, an optimal path vector to node n will be identified, from which it is straightforward to

recover an associated path (via a simple backtracking scheme). Consequently, we shall work

entirely with path vectors. Not all possible path vectors need to be retained at a node, however.

To this end, a vector x is said to dominate vector y if x < y holds componentwise and at least one

of the inequalities is strict. (This nomenclature is meant to convey the idea that x is "better" than y;

however usage in this way is not standard in the literature.) A set S of vectors is efficient (Pareto

6

optimal) if no vector x e S dominates another vector y E S. More generally, the set

EFFICIENT(S) is obtained from set S by removing all dominated vectors.

In the algorithm given below, only efficient set, L(j;k) are maintained at each node. This

algorithm represents a suitably modified version of the algorithm ACYCLIC given by Warburton

(1987) for obtaining the set of efficient path vectors in a bicriterion shortest path problem.

LABELING ALGORITHM

1. L(O;0) = {(0, 0)};

L(O;k)=0, fork= 1 ... ,p.

2. Forj = 1, ... , n-1

L(j;O) = 0;
Fork = 1 ..., p-I

L(j;k) =EFFICIENT {.J L(i;k-l)® (x(i, j), y(i, j))}.
I<]

3. L(n.p) - EFFICIENT{Q L(i;p-l)® (x(i, n), y(i, n))}.
I<n

4. Select v = (v1 , v2) E L(n;p) for which v, + v2 is minimum.

Upon termination, the labeling algorithm produces a set of efficient path vectors L(n;p),

from which an optimal p-edge path vector for (1) is readily obtained in Step 4. If we also maintain

the N ector labels L(n, k) at node n, sensitivity analysis information will be available on the effect of

reducing the number of processors from the fixed value p. Of course, optimal partitions for the

virlous subproblems using modules { 1, ... , j}, j < n, are also readily derived from the vector

labels on node j. It should be noted that the range for k in Step 2 can actually be replaced by

k = max{ 1, p-n+j} min{p- 1, j}. This type of pruning allows th, elimination of paths

whose cardinality is too small to lead to an optimal path at node n having p edges, and it also

avoids the examination of lists known to be empty.

The worst-case time complexity of the labeling algorithm is determined by the complexity

of calculating EFFICIENT(S) in Steps 2 and 3. Suppose that Lmax is the maximum size of any set

7

L(j;k) produced during the course of the algorithm. By keeping each L(j;k) as a list of vectors,

ordered by their first component, repeated merge sorts suffice to maintain an ordered list without

dominated elements. In the worst case there can be 0(n) sublists to merge, each of size L.. ,

resulting in 0(n log n Lmax) work to calculate EFFICIENT(S). Overall, the complexity of carrying

out Steps 2 and 3 is then O(p n2 log n L.ax). Since each element of the efficient set LO; k) repre-

sents a path vector len(P) and since the first component of len(P) can assume at most m = JE

distinct values, Lma x !< m = 0(n 2) and the overall time complexity of the labeling algorithm can

be bounded by O(p n4 logn). Space requirements are O(p n Lmax) - 0(p n3) in the worst case. In

practice, however, these estimates would appear to be overly pessimistic and the expected perfor-

mance of the algorithm should be significantly better. The empirical results presented in Section 7

confirm this belief.

4. The Recursive Bisection Algorithm

This section describes a different approach for solving the two-stage problem, based on

generating a set of candidate path vectors guaranteed to contain all efficient path vectors from node

0 to node n. The optimal solution vector can then be easily obtained from this set. The following

simple observation serves to motivate this second approach. Namely, if P* is an optimal path for

the two-stage problem, then the optimal objective function value is given by

z* Imax x(a)1 + Imax y(b)] =- x(a*) + y(b*)
aE P* bE P*

where a* and b* are edges of P*. Consider the subgraph of G

G, *e (E: x(e) < x(a)}

consisting of all edges with x-weight at most x(a). Then it is not difficult to find a "best" path in

Ga with respect to the y-weights, a path Pa in Ga from 0 to n with cardinality p that minimizes the

maximum y-weight along Pa:

y(b a) = max {y(b) .b EP,

8

Such a minimax path can be found using a straightforward modification of the standard Dijkstra

shortest path algorithm (see Kalaba 1964). Finally, the optimal two-stage solution is found by

selecting a path Pa that minimizes x(a) + y(ba). This basic approach would require m calls to the

minimax (p-edge) path routine, each such invocation requiring O(p m) work, so the overall time

complexity is bounded by O(p m2) = O(p n4).

An improved approach that treats the x-weights and y-weights more symmetrically, and

that has a significantly better complexity bound, will now be developed. First, the x-weights on

the m arcs of G are sorted into nondecreasing order: x(a) <_ x(a 2)!_ ... < x(a.). Likewise, the y-

weights are sorted as y(b) < y(b 2) _ . y(bm). Next, we define the subgraph Gab of G via

Ga,b = {e r E: x(e) < x(a), y(e) < y(b)}.

The MLAA problem can then be solved by finding edges a, b E E so that Ix(a), y(b) is feasible

(i.e., Gab admits a path P from 0 to n with 1IPII = p) and x(a) + y(b) is minimum (over all feasible

pairs).

It will be useful to introduce a feasibility matrix Z, whose (i, j) entry z i indicates whether

the pair tx(ai), y(bj)l is feasible (F) or not (I). Because of the previous ordering of x-weights and

y-weights, whenever Zst = F then zij = F for i _> s andj > t. Also, if zt = I then zi = I for i < s and

j t. A typical pattern for the matrix Z is illustrated in Figure 1. The efficient path vectors

Ix(a), y(b)J are indicated by circled entries in the matrix.

I I I ® F F
II I F F F

Z= @® F F F F F
F F F F F F

FF F F F F F .

Figure 1. Example feasibility matrix Z.

9

We would like to generate a candidate set of entries (at most m), guaranteed to contain the

efficient (circled) entries in the feasibility matrix. Since it is computationally expensive to deter-

mine the values of entries in this matrix, it is desirable to evaluate as few entries as possible. It is

somewhat surprising that we can in fact determine the candidate set (having possibly m entries) by

evaluating only at most 0(m) of the entries z.i,

For notational convenience, it will be assumed that m = 2 k for some integer k > 0. Because

of the ordering properties of Z, derived from the ordering of x-weights and y-weights, we can
m

perform a binary search on the elements of the (median) row s = - of Z to find the smallest t so
2

that zt = F. This will be termed a binary search at level 0, and it requires O(log m) evaluations of

entries in Z. Entry (s, t) of the mairix then becomes a candidate solution. The ordering properties

of Z ensure that the submatrix of Z with upper left comer at (s, t) contains only F's, while the

submatrix with lower right comer at (s, t-1) contains only I's. Therefore, it is only necessary to

explore two remaining submatrices for candidate solutions: the submatrix with lower left comer at

(s-I, t), and the submatrix with upper right comer at (s+ 1, t- 1). Each submatrix can in turn be

explored by performing a binary search along a row in median position within the submatrix. If

the first submatrix has ci columns and the second has c2 columns, then the number of evaluations

needed to carry out these two binary searches is O(log c1)+ O(log c2). By the concavity of the log

function. - log c1 log C 2 log[I(cI+ c2) = log -a , and so the number of evaluations

required for these two level I searches is of the order 2 log -!. In a similar way, the 21 binary

,earches at level 1 require at most 21 log M evaluations, so the total number of evaluations needed

i of the order

log m + 2(log -D + 4log -)+ ... + -a-(2) + (lm m -

Since the infinite series is convergent, at most 0(m) entries of Z will need to be examined. A

formal statement of this algorithm (RECURSIVE BISECTION) is given below, applied to an

m x m feasibility matrix Z.

10

RECURSIVE BISECTION ALGORITHM

[Main Programl

C=O;

BISECT (Z, m, m, C);
Select (i, j) e C with minimum x(a) + y(bj).

[Recursive Subprograml

procedure BISECT (M, rows, cols, C)

s = Frows/21;
Determine (by binary search) the smallest t

so that mst = F; C = C u {(s, t)};
if s > I then

Let M1 be the submatrix of M with lower left
comer at (s- 1, t);

BISECT (M1, s-I, cols-t+1, C);
if s < rows and t > 1 then

Let M2 be the submatrix of M with upper right
comer at (s- 1, t- 1);

BISECT (M2, rows-s, t-I, C).

As shown above, this algorithm requires 0(m) entries of Z to be evaluated in carrying out

the various binary searches on partial rows of the input matrix. Once the smallest feasible entry in

the prewcribed row is determined, the candidate set C is updated appropriately. We now discuss

how any entry of the feasiility matrix can be efficiently computed, when required.

Recall that the value of an entry in the feasibility matrix is determined by whether there is a

path in, Gab of cardinality p from 0 to n. In view of the definition (2) of edge weights and the

nonncgativity of processing times, the following monotonicity property is immediate.

Property I. If i < j _ k then x(i, j). x(j, k) _< x(i, k) and y(i, j), y(j, k) < y(i, k).

The next property follows directly from Property 1.

Property 2. Suppo,;e that i < j < k and that (i, k) E Ga, b* Then (i, j) E Ga and (j, k) E Ga,b.

Proof: Since (i, k) E Gab we have x(i, k) < x(a) and y(i, k) < y(b). From Property 1, x(i, j) <

x(i. k) < x(a) and y(i, j) _< y(i, k) < y(b) and so (i, j) E G a,b. In a similar way, (j, k) E Ga,b.

We are now in a position to describe an algorithm for determining the feasibility of

Sx(a..v(b)J. The basic idea is to start from node 0 and to repeatedly follow the edge in Ga,b that

reaches to the node of largest index, until we reach node n. If this constructed path has cardinality

< p then it will turn out that fx(a), y(b)] is feasible, and conversely. This greedy procedure

tREACH) for checking feasibility in Gab is stated below.

procedure REACH(a,b)

1. s -- 0, card = 0;

2. While card < p
Find the largest j so that (s, j) (Gab

card -card - 1;

if j - n then output true and stop

ele s = j;

3. Output 10iW.

The validity ,f REACH is now established: namely, it will be shown that the output true is

produced precisely hen there is a path of cardinality p in Gab from node 0 to node n. Suppose

that REACI I outputs true. Then we are assured of a path P of cardinality < p in Ga,b from 0 to n.

Since p < n, Property 2 ensures that if such a path actually has cardinality < p, then there must be

some path of cardinality exactly p. (Just successively replace edges (i, j) E P by edges (i, k) and

(k. j) as needed.) On the other hand, suppose there is a path Q in Go of cardinality p from 0 to n,

where Q = 1(i0, iY), (i1, i) (ip., ip)1, with i0 = 0and ip = n. Let the path produced by

12

REACH be P = [(J0,j), (J, j 2) .. (Jp- jt)J, with j0
= 0. Clearly, since i0 =j 0 and (i0, iI) E

Ga,b procedure REACH will generate J, -> i1. Since (i1 , i2) E Gab Property 2 guarantees that

(J. i2) ' Gab and thus the node j2 selected by REACH must satisfy j2 i2. Continuing in this

way, we can establish that j3
> i3, ... , Jp > ip = n. Hence REACH will detect a path of cardinality

at most p to node n and output true.

The time complexity of REACH, and consequently that of the recursive bisection

algorithm, is now easy to establish. First, we note that the graph Ga,b need not be explicitly

constructed in order to carry out Step 2 of REACH. Namely, by Property I the edges emanating

from node s are automatically ordered by their x-weight and by their y-weight:

x(s, s+l) _ x(s, s- 2) < ... _< x(s, n); y(s, s+1) <y(s, s+2) _ ... -<y(s, n).

Thus, a binary search can be used on the n - s pairs (s, s+1), ... , (s, n) to find the largest index j

for which x(s, j) S x(a) and y(s, j) < y(b). The time complexity of one iteration of Step 2 is thus

O(log n), and REACtt therefore can be implemented to run in O(p logn) time. As a result, the

recursive bisection algorithm has O(p m logn) = O(p n2 logn) worst-case time complexity. Also,

the initial sorting of x-weights and y-weights can be done in O(m logm) = O(n2 logn) time, so the

overall time complexity remains at O(p n2 log n). The space requirements are dominated by the

O(n 2) storage needed to keep G as well as the sorted x-weights and v--eights.

In summary, the recursive bisection method presented in this section exhibits a better

worst-case time complexity than the labeling algorithm of Section 3. Because the former algorithm

makes repeated use of binary searches (whose worst-case and average-case behaviors are similar),,

it is anticipated that in practice the empirical complexity of the algorithm should closely reflect its

worst-case bound. This is in contrast to the labeling algorithm, whose empirical performance will

depend on the number of labels (Lma) actually encountered.

A final observation concerns the additive assumption made for combining processing times

into edge weights x(i, j) and y(i, j). The specific (additive) way of combining the xk's and the yk's

in (2) is by no means essential. In fact, any monotone nondecreasing function of the processing

13

times can be used. Then Properties I and 2 will continue to hold and the resulting algorithm will

still be valid.

5. Complexity Results

In Section 2 we formulated the MLAA problem as a min-sum-max optimization problem on

a graph. For the case when exactly two stages are associated with each module, two polynomial-

time algorithms for this problem were presented in Sections 3 and 4. In the present section we

prove that for r stages the MLAA decision problem is NT-complete. To do this we show that any

3-Satisfiability decision problem, a well known NP-complete problem (Garey and Johnson 1979),

can be reduced to an instance of the MLAA decision problem. Before proceeding with the proof

we state the aforementioned problems formally.

3-SAT

Instance: A collection C = {c1, c2, cm} of clauses on a finite set U = {xI, x2 ... , xul of

0,1 variables such that each clause ci is a disjunction of exactly three literals (xi or

is a literal).

Decision Problem: Is there a truth assignment for U that satisfies all the clauses in C?

MILAA

Instance: A collection of n modules and p processors. Associated with each module i is an r

dimensional nonnegative real weight vector (w (i), w2(i), Wr(i)).

Decision Problem: Is there a partition of the n modules into p contiguous intervals I1, ... , Ip

so that Xr maxj wk(l) < B, where B is a positive real number? (As in Section 2,
Wk(J) = Y Wk(i)'

Theorem 1. The MLAA decision problem is NP-complete.

Prf: It is easy to see that MLAA is a member of class NP since a nondeterministic turing

machine need only guess a partition I1 Ip and check in polynomial time whether or not

Y'=, max. Wk(Ij) < B.

k i kil

14

It remains to show that any instance of 3-SAT can be transformed into a MLAA problem.

For the purposes of the proof, we define B = 30u, p = 3u + 4m, n = 4u + 6m, r = 2u + 1, and

F = 24u. Here F represents a parameter whose use will become apparent as the proof proceeds.

Throughout the proof we will use the term bottleneck weight to refer to maxj Wk(lJ) relative to

some entry k. The transformation consists of two parts. The first involves constructing four

consecutive modules for each xi E U; the second appends a further 6m modules (described later)

corresponding to the m clauses. Associate with each of the first 4u modules a weight vector of

dimension r. The first 2u entries of each weight vector will be positionally associated with the

elements of U as follows: (xI, x1 , x2, x2 xu, Xe). Entry 2u + I is not associated with a literal

and will contain some fractional part of F. This entry is used to force particular assignments of

modules to processors. In particular, the values chosen for F, B, and p will force a bottleneck

weight of F in entry 2u + I for any feasible partition of the modules.

Each set of four weight vectors associated with a variable xi are assigned values in a similar

fashion. Module j - I (mod 4) corresponds to the start of a new set of four modules associated

with a vanable. Assume, without loss of generality, thatj- 1 (mod 4) corresponds to the ith

variable. Each entry of the weight vector for module j will be 0, except for entry 2u + 1 which has

a value of F. The weight vector for module j + 1 has a 2 in entry 2i - 1, an F/2 in entry 2u + 1, and

O's elsewhere. The weight vector for module j + 2 has a 2 in entries 2i - I and 2i, an F/2 in entry

2u + 1, and O's elsewhere. Lastly, the weight vector for module j + 3 has a 2 in entry 2i, an F/2 in

entry 2u - 1, and 0's elsewhere.

The values given to F, B and p insure that modules j =- I (mod 4) are assigned to a single

proccv,,,r and modules j + 1, j - 2, and j + 3 are assigned to exactly two processors. In particular

if modules j + I and j - 2 are assigned to the same processor then bottleneck weights of 4 and 2

result for the components associated with xi and xi respectively. We interpret this as indicating that

xi is true since 4 is greater than 2. The alternative assignment indicates Xi is true.

The second part of the transformation concerns clauses. We construct a sequence of 6

consecutive modules for each clause in an instance of 3-SAT. Again we associate a weight vector

15

of length r with each of the 6m modules. The construction of these weight vectors follows a

similar pattern for each of the m six-module sets. Let v M1 (mod 6) and j = 4u + v. The weight

vector for module j has O's in entries 1 to 2u and an F in entry 2u + 1. The weight vector for

module j + 1 has a 2 for the entry corresponding to the first literal in clause c = [(v - 1)/61 + 1, a

2F/3 in entry 2u + 1, and O's elsewhere. The weight vector for module j + 2 has a 1 for the entries

corresponding to the first two literals of clause c, an F/3 in entry 2u + 1, and O's elsewhere. The

weight vector for module j , 3 has a 1 for the entry corresponding to the second literal of clause

c, an F/3 in entry 2u + 1, and O's elsewhere. The weight vector for module j + 4 has a 1 for the

entries corresponding to the last two literals of clause c, an F/3 in entry 2u + 1, and O's elsewhere.

Lastly, the weight vector for module j + 5 has a 2 for the entry corresponding to the third literal of

clause c, a 2F/3 in entry 2u + 1, and O's elsewhere.

In view of the values chosen for F, B, and p, each module j = 4u + v, with v =1 (mod 6)

must be assigned to a single processor and modules j + 1, ... , j + 5 must be partitioned among

exactly three processors. Any feasible partition of modules j + 1, ..., j + 5 into three intervals

must have a bottleneck weight of no more than F in entry 2u + 1. In addition, such a feasible

partition will result in a bottleneck weight of 3 for at least one (possibly two) of the entries

(literals). Any literal associated with a bottleneck weight of 3 is considered as one satisfying the

clause. Note that if the literal was assigned the value true earlier in the variable to module assign-

ment, that entry will already have a bottleneck weight of 4 which will mask the 3. However, if a

literal selected by the clause was not assigned the value true earlier, that entry's bottleneck weight

of 2 will be increased by the value 3 created in the modules associated with the clauses.

This transformation of an instance of 3-SAT into an instance of MLAA is best illustrated by

an example. Suppose S = (x1 v X2 v x3) A (x 1 v x2 v x3) is the given 3-SAT problem, so that

U= {x 1,x 2,x 3},u =3,m= 2,n =24, B=90, F= 72, andp= 17. The module weight

vectors corresponding to the three elements of U are given in Figure 2 and the module weight

vectors corresponding to the clauses are given in Figure 3. One solution for S has xl, x2 , and x3

true. A module to processor assignment corresponding to this solution is given in Figure 4. The

16

bottleneck vector associated with the solution in Figure 4 is (4, 2, 4, 2, 2, 4, F). The component-

wise sum of this vector- is 1 I 9 B, as expected.

Finally we must show that a given instance of 3-SAT is solved if and only ifthe corres-

ponding instance of MLAA has a solution with a cost of no more than B = 30u. Suppose that a

given instance of 3-SAT has a solution. Our prior comments guarantee that the instance of MLAA

constructed from the given instance of 3-SAT has an assignment for which the sum of the xi and xi

bottleneck weights is 6 for all i = 1, ..., u and the bottleneck weight in the last entry is F. There-

fore we have a solution with total weight 6u + F = B. No solution to the constructed instance of

MLAA with cost less than B is possible since entry 2u + 1 will always contribute a bottleneck

weight of F and the bottleneck weights corresponding to xi and -i contribute a sum no less than 6,

for a total weight of at least B. It follows then that any solution to the instance of MLAA will

imply a variable assignment that is a solution for the corresponding instance of 3-SAT.

1 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0

X1 0 0 2 2 0 0 0 0 0 0 0 0

x2 0 0 0 0 0 2 2 0 0 0 0 0

Xi 0 0 0 0 0 0 2 2 0 0 0 0

X3 0 0 0 0 0 0 0 0 0 2 2 0

x3 0 0 0 0 0 0 0 0 0 0 2 2

F F/2 F/2 F/2 F F/2 F/2 F/2 F F/2 F/2 F/2

Figure 2. Module weights corresponding to the variables of U.

17

13 14 15 16 17 18 19 20 21 22 23 24

x 1 0 2 1 0 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 2 1 0 0 0

x2 0 0 0 0 0 0 0 0 1 1 1 0

x2 0 0 1 1 1 0 0 0 0 0 0 0

x3 0 0 0 0 1 2 0 0 0 0 1 2

X3 0 0 0 0 0 0 0 0 0 0 0 0

F 2F/3 F/3 F/3 F/3 2F/3 F 2F/3 F/3 F/3 F/3 2F/3

Figure 3. Module weights corresponding to the clauses.

Module

O WO EIWOI OLED~ ESIJO E
S t T T T II T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Processor

Figure 4. A solution to S and the module to processor assignment.

18

Since we can solve the MLAA decision problem by finding a min-sum-max path with p

edges in an acyclic graph, it follows that the min-sum-max path decision problem is NP-complete

for acyclic graphs. We state this as a corollary.

Corollary_ 1. The Min-Sum-Max decision problem for acyclic graphs is NP-complete.

The NP-completeness of the MLAA decision problem depends on treating r as a problem

variable. For fixed r the natural extension of the labeling algorithm in Section 3 has polynomial-

time complexity. To describe this extension, the only change needed from our previous descrip-

tion is in the efficient set calculation. The following discussion centers on the labeling algorithm

pseudocode and complexity analysis given in Section 3.

Let W(i, j) = (w1(i, j), w2(i,' j).. wr0, j)) be the weight vector associated with the edge

between nodes i and j. Each computation of the form L(i;k-1) 8 W(i, j) performed in Steps 2 and

3 requires O(r Lmax time; constructing the list L. = .i< j L(i; k- 1) 0 W(i, j) requires O(n r Lmax)

time. Notice that L has length L = O(n Lmax). Kung et al. (1975) describe an O(L logr-2 L) time
algorithm (for r > 2) that can be used to calculate EFFICIENT(Lj). Since Lm, has O(mrl) length,

a fact easily shown by induction, this extended labeling algorithm has O(p n2r logr-2 (n2r-1)) time

complexity. For fixed r, MLAA can thus be solved in polynomial time, albeit a polynomial of high

degree. The following section outlines certain refinements for improving the performance of this

type of algorithm.

6. Algorithms for r > 2

The recursi,e bisection algorithm of Section 4 can also be generalized for r > 2 stages:

REACH extends in a natural way, and the feasibility matrix becomes an r-dimensional array.

I lowever, the search process does not scale well. In the two-stage problem, knowledge that (x, y)

is the least costly feasible solution in a row allows us to ignore at least one-half of the rectangle

being searched and creates two smaller rectangles to search recursively. In an r-stage problem we

may similarly find the least costly feasible solution within a "row" (vectors that differ only in a

19

given dimension). However, this identification allows us to eliminate as little as 1/2r-I of the

hyper-rectangle being searched and creates up to 21-2 hyper-rectangles that must be searched

recursively. Consequently the remainder of this section focuses on extensions of the labeling

algorithm for r > 2. Specifically, we describe computational refinements of the labeling algorithm,

together with two heuristics suitable for problems that are too large for exact solution.

We have tested two algorithms for determining EFFICIENT(L): the algorithm of Kung et

al. (1975) and an algorithm that does domination checking on the fly. On all the problems tested,

the former algorithm ran an order of magnitude slower. Therefore, the less sophisticated (but for

our problems, apparently faster) second approach for calculating L(j; k) has been subsequently

used. This procedure constructs, then accepts or rejects, each potential member of LO; k). An

accepted member may cause previously accepted members to be discarded, and it is entered only

once into LO; k). A prtential member is immediately rejected if it is found to be dominated by an

existing member of L(j; k). This algorithm, listed below, requires O(n r Lma x) time to construct

L(j; k).

CONSTRUCTION ALGORITHM
1. L(j-.k = ;

2. For i=l1....j-1

3. For all U L(ik-1)

T = U ® W(i,j);

For alI V r L(jk)

ifT<V

L(j;k) = LO;k)- {V}

else if T > V
go to 3;

L;k) = L;k) u {T}.

Let T e L(j; k) and suppose there is a path vector X E LO; h), h < k, such that X T

(componentwise vector comparison). If P and Q are subpaths corresponding to path vectors T and

X respectively, then in any solution path (with p edges) that uses P, the subpath P can be replaced

with subpath Q, yielding a new solution path (with < p edges) having the same or an improved

20

solution cost. It follows from Property 1 of Section 4 that such a path can be extended to a

solution path with exactly p edges without degrading the solution cost. This observation leads to

our first pruning rule - a potential member T of L(j; k) is rejected if T > X for some X 6 L(j; h)

with h < k. Use of this rule now increases the worst-case complexity of the L(j; k) calculation to

2
O(p n r Lmax). Nevertheless, in empirical testing the rule was found to eliminate a large number of

paths, and as a result improved the overall execution time.

Further pruning is possible if we know the sum-max cost c of a feasible solution. Let T be

any potential member of L(j; k), corresponding to subpath P. The component sum of T is a lower

bound on the cost of any solution path using P. If the component sum of T exceeds c, we know

that any solution involving P has cost exceeding c and must therefore be suboptimal. The vector T

is then eliminavud by this forward pruning rule.

Backward pruning is also possible. For any fixed j, the vectors W(i, j) increase monoton-

ically in each component as i decreases. Thus if the sum of W(i0 , j0)'s components exceeds c,

then for all i _< i0 we know that (i, J0) cannot be an edge in an optimal path. For every j we define

low(c, j) to be the smallest index i such that the component sum of W(i, j) is less than c. Then in

Step 2 of the construction algorithm above the lower bound of the i loop can be replaced with

low(c, j). Backward pruning also allows us to free space used to represent path vector lists, an

important consideration in extending the size of problems that can be solved (see Section 7).

As will be described in Section 7, the extended labeling algorithm (with the above pruning

rules incorporated) has been successfully used on a number of nontrivial examples; in one case we

solved a 1024 module, four-processor, four-stage problem, and in another case we solved a 128

mriodule, sixteen-processor, eight-stage problem. Some problem classes (as the fluid flow problem

mentioned in Section 1) tend to have a substantial number of modules, thus motivating the use of

heuristics for the MLAA problem. Heuristics are also useful in providing feasible solutions for the

forward and backward pruning rules, and are valuable even for the two-stage problem when n is

so large that the O(p n2 log n) complexity is daunting.

21

The heuristics to be developed here are built on the ability to solve the one-stage problem

very efficiently, in O(p n log n) time. This efficient technique, based on the methodology devel-

oped in Nicol (1988), is now briefly described. First note that the minimum bottleneck value for

the one-stage problem is identically one of O(n2) edge weights. A one-stage version of REACH

establishes the feasibility of any candidate weight in O(p log n) time. The set of all edge weights

x(i, j) can be conceptually organized in an upper triangular matrix, with i and j being the row and

column indices, respectively. By Property 1, the entries in any row increase monotonically in the

columns, while column entries decrease monotonically in the rows. The recursive bisection

algorithm of Section 4 is then easily modified to find the minimum feasible edge weight using O(n)

REACH calls, showing that the one-stage MLAA problem can be solved in O(p n log n) time.

Our approach to developing heuristics proceeds by projecting an r-stage problem onto a

one-stage problem, which is then optimally solved. An optimal partition for the projected problem

yields an approximate solution for the r-stage problem. It will also be seen that the ability to solve

one-stage problems efficiently aids us in evaluating the quality of various heuristic solutions.

Two projections are quite natural. The first takes a module's r-stage weight vector and

transforms it into a single-stage weight by summing all the weights. The second method trans-

forms a module's weight vector by selecting the maximum component. The resulting methods are

termed the sum-projection and the max-projection heuristics, respectively. The sum-projection

heuristic is of particular interest here. As will be seen in Section 7, this heuristic produces better

partitions in practice than the max-projection heuristic. Furthermore, it will now be shown how

the quality of a partition it produces can be bounded, relative to the (unknown) optimal partition.

Thins bound is particularly tight when the variance in module weights is small.

For i = 1 p let Wi be the sum of execution times, at all stages, of all modules assigned

to processor i under the partition produced by the sum-projection, with Wmax the largest among

these. Similarly, let Vi be the sum of all workloads on processor i under the optimal partition (with

respect to the r-stage problem), and let Vmax be the largest of these. By the optimality of the one-

stage partition for the sum-projection, Wmax < Vmax. Now for j = 1, ... , r let b be the bottleneck

22

weight at stage j for the sum-projection partition, and let sp(j) denote the corresponding stage j

bottleneck processor. Then for some positive aj < 1 we have b= ai J Wsp,) . The r-stage cost of
r

the sum-projection partition is thus CsP = X i Wsp) , yielding

r

Csp a I J W max (4)
j=l

Let Cop be the cost of an optimal r-stage partition. Clearly Vmax !< Cop , because V.. represents

the work that must be done by one processor whereas Copt is the total system finishing time. Thus

we have Wmax - Vmax Cop and consequently

WmaX/Csp <_ Copt/Csp. (5)

Now we would like to develop bounds for the left hand side of this inequality.

For every module i, let M(i) and m(i) denote the respective maximum and minimum stage

weights, with pi = m(i)/M(i) and p* = min{pi: i = 1, ... , n}. Now aj is the fraction of processor

sp(j)'s total workload resident at stage j, and ox, is consequently maximized if all of the stage j

module weights assigned to sp(j) are as large as possible, and if all of the other stage weights for

sp(j) are as small as possible. Without loss of generality suppose that k modules are assigned to

sp(j) and that sp(j) is processor one. We can then bound a, from above using

cci < (6)

1=1L

.f S1, sk and t1 , tk are nonnegative reals then a straightforward induction on k shows that

k

<= maxJ

t
i-I

23

Applying the above to inequality (6) produces

0C. ! max-1 =maxS < r I<_i_k (r-1)P + II (r-l)p* + I

This allows us to bound CSP in (4) from above, giving

cSP < r Wmax (7)
s (r-1)p* + 1

Another bound on CSP can be constructed in an analogous fashion. Let SO) and sO) denote

(respectively) the maximum and minimum weights overall modules at stage j, with s = 5(i)

Then we have aj <5 Ti, with

S
o)

J s(j) S)

This yields the second bound

C.P -Wmax' (8)

wheret- T T

Applying the above bounds (7), (8) on CsP to (5) produces max{ li/t, I(r-l)p* + ll/r} -

CoptCp,. which implies in particular that

max{ JIt, p*O l/r. 5<Copt/Csp (9)

Relation (9) provides in turn an upper bound on how much the cost of the heuristic solution varies

from the cost of the optimal solution, thus indicating the quality of the sum-projection heuristic.

The bounds above are especially encouraging when module weight variation, either within

a module or within a stage, is known to be low. In the extreme case when a module's stage

weights are all equal (so p* = 1), or when all module weights within any stage are equal (so

T - 1), relation (9) shows that Csp < Copt and thus the heuristic will in fact produce an optimal

partition. In Section 7 we will encounter a problem class for which the value of p* is no smaller

24

than 1/2. We can then be assured that the sum-projection solution for this problem class is never

more than twice as costly as the optimal solution. On the other hand, the l/t bound is useful if any

module weights are zero (forcing p* = 0). One class of problems studied in Section 7 frequently

has zero module weights.

The a priori bound (9) on solution quality is less satisfying when li/t, p*, and 1/r are all

small. An alternative a posteriori approach is based on our ability to quickly construct a lower

bound on CO. Namely, any r-stage problem can be decomposed by stage into r separate one-

stage problems. Let a be the optimal bottleneck value of the one-stage problem constructed from

stage j module weights, and let opt, be the stage j bottleneck value under an optimal partition for the
r-stage problem. Clearly we must have aj a<Copr Given the cost Ch of the

partition produced by some heuristic, the ratio Copt/Ch is bounded from below by the ratio

a -)/C h . Each a, can be found in O(p n log n) time, making this a feasible mechanism for

bounding the quality of any partition produced by a heuristic. Our experience with both exact and

heuristic solution methods for r stages is summarized in the following section, together with

cornptational evidence concerning the bounds on solution quality.

7. Computational Experience

We have implemented the extended labeling algorithm, as well as the two projection

heuntics, in the C language on a networked, diskless SUN/3 workstation having 4 Mb of

memory. This section describes the computational results obtained with these algorithms on three

;,41,-n vpes. The performance benefits gained by using one of these algorithms as a

.?rcr. L.',or for a multiprocessor fluid flow code are also discusseO.

In our study of the extended labeling algorithm, the number of modules (n) was chosen to

be a power of 2. The upper limit on n varied by problem type, with the largest n attempted being

1024. In addition, p was chosen to be a power of two (between 2 and 16), and r was a power of

two (between 2 and 8). Three classes of test problems were studied. In the first class, all module

weights were randomly chosen from the uniform probability distribution on I1, 100011. In the

25

second class, weights for any given stage were created using a sine function over 10, 2i with

amplitude 50, frequency 2, and translated upward in the y direction by the constant 150; all module

weights are consequently between 100 and 200. To generate the weight for module i, we evaluate

the sine function at x = i. 2n/(n- 1) and retain the integer portion of that evaluation. The "phase

constant" for such a curve is the smallest x e [0, 27c] at which the derivative is equal to 1. The

curves for different stages have different phase constants: the phase constant for stage 1 is 0, and

for stage j > 1 it is E/2j-l.Figure 5 illustrates this weight generation procedure. The third class

contains problems modeled on the fluid flow example described in Section 1. For this class we

used at most four stages; these problems frequently have module weights of zero in regions where

finer grids are absent.

l_-N

-- Stage 3

: ' Stage 4

/ - \ '

- , / / ,Stage 2
"\ \ / / Stage I

. .: /, /, C /,, C

2 5 6

X

Figure 5. Module weights in a four-stage sine wave problem.

26

This computational study was devised to (i) determine how large a problem can be solved

exactly, (ii) determine whether the refinements proposed improve our ability to solve larger prob-

lems, and (iii) assess the quality of solutions produced by the heuristics, when compared to the

exact solution obtained by the labeling algorithm. In this empirical study, problems from a given

class with identical size parameters behaved similarly. Consequently, we feel justified in reporting

the results from a single (representative) run. In the tabulations that follow, two problems differ-

ing only in the number of processors had the same module weights.

Table 2 presents a summary of results obtained using the extended labeling algorithm

(utilizing all refinements described in Section 6). Results for each problem class, indexed by the

number of modules (n) and the number of processors (p), display three performance measures.

The first measure is elapsed processing time for the problem, in seconds. This time excludes that

required to generate a feasible solution using the sum-projection heuristic, as this amount was

insignificant in comparison to the execution time required by the extended labeling algorithm. If

the running time has an associated asterisk, that problem has four stages; otherwise it has eight

stages. The second measure is the speed-up factor from using the refinements: namely, the ratio of

processing time without refinements (the basic algorithm) to that utilizing the refinements. The

third measure is the ratio of the maximum number of path vectors in use at any time while running

the basic version, divided by the same quantity for the version with refinements. The maximum

number of path vectors used is an important measure, as it quantifies the amount of storage needed

by an algorithm. Indeed, for the system configuration used in conducting the tests, the limiting

factor in solving the largest problems turned out to be the available storage rather than the compu-

tai, ,,Li i;ie. The symbol (-) is used in Table 2 to indicate when the given problem could not be

solved by the basic algorithm with the available resources.

Table 2 shows that for a variety of problem types the extended labeling algorithm can solve

problems of reasonable size in a reasonable amount of time. These results also show that the

refinements proposed can significantly reduce the algorithm's execution time and storage require-

ments, and in doing so increase the size of problems that can be solved exactly.

27

We are also interested in the quality of solutions produced by the proposed heuristics, and

in the behavior of the a priori and a posteriori bounds on C0pt/Csp developed in Section 6. We

have applied the sum-projection and max-projection heuristics to each problem listed in Table 2 and

have computed the ratio of the optimal cost divided by the heuristic cost. We have also computed

the a priori and a posteriori bounds for the sum-projection heuristic. Table 3 displays the sample

mean and standard deviation of the individual problem measurements for each problem class. For

the problems studied here, the sum-projection always achieved a better solution than the max-

projection, and it typically obtained solutions quite close to optimal. The sum-projection's a priori

bounds tend to be low, due to significant variation in the module weights. On the other hand, the a

posteriori bounds are reasonably tight, thereby justifying the additional effort needed to compute

them.

The sum-projection heuristic has been used to produce partitions for a multiprocessor

implementation of the fluid flow problem. The multiprocessor employed is a Flex/32, at the

NASA Langley Research Center. The Flex/32 is a shared-memory architecture, with eighteen

processors available for parallel processing. The grid problems studied consisted of 2048 coarse

grid points and four stages; each problem was partitioned for sixteen processors. The flow

problems studied tended to concentrate fine grids at one end of the domain. We compared the

execution time of the sum-projection method against that of the simplest partitioning method,

which simply divides the domain into sixteen equi-length pieces. On a suite of five such problems,

computations partitioned using the sum-projection heuristic ran more than twice as fast compared

to the equi-length partition. Data taken from these runs is presented in Table 4. This provides

clear evidence that substantial performance benefits can be gained by using the MLAA solution

techniques on real problems, implemented on real parallel architectures.

28

Table 2

Performance of the Extended Labeling Algorithm on Three Problem Classes

(Four-stage problems are marked with *, all others involve eight stages)

Uniform Random Problems

p=4 p= 8 p= 16

time time space time time space time time space

n (secs) ratio ratio (sees) ratio ratio (sees) ratio ratio

32 3 3 3.5 8 6 6.1 156 -

64 14 1 3.6 99 6 5.9 286 -

128 10 3 3.4 2147 - - 409* -

256 24* 2 3.1 1139* - -

Sine Wave Problems

p=4 p=8 p= 16

time time space time time space time time space

n (sees) ratio ratio (sees) ratio ratio (sees) ratio ratio

32 6 1 2.6 6 2 4.5 7 2 7.3

64 8 2 2.7 16 5.3 8.2 62 13 9.2

128 15 3 2.9 406 - - 2960 - -

256 190* - -

29

Fluid Flow Grid Problems

p=4 p=8 p=1 6

time time space time time space time time space

n (secs) ratio ratio (secs) ratio ratio (secs) ratio ratio

32 1* 3 1.8 1* 3 3.0 1* 4 3.6

64 4* 1 2.2 4* 2 4.0 4* 4 6.0

128 5* 4 3.3 17* 3 5.4 33* 6 5.3

256 21* 3 2.8 191* - - 232* - -

512 73* 35 3.1 5534* -

1024 4524* - -

Table 3

Measurements and Lower Bounds on Ratio of Optimal Cost Divided by Heuristic Cost

Uniform Sine Grid

ratio mcan deviation mean deviation mean deviation

max 0.92 0.04 0.94 0.20 0.79 0.11

sum 0.97 0.02 0.98 0.01 0.85 0.08

a priori 0.30 0.07 0.68 0.05 0.26 0.02

a posteriori 0.87 0.05 0.90 0.03 0.70 0.15

30

Table 4
Fluid Flow Problem Execution Times (in seconds)

run serial MLAA MLAA standard standard
time time speedup time speedup

149.9 14.9 10.0 32.8 4.5

2 142.1 14.3 9.9 30.8 4.6

3 130.2 13.4 9.7 30.0 4.3
4 110.2 12.5 8.8 28.4 3.8

5 101.6 11.7 8.7 22.9 4.4

8. Summary

This paper has considered the problem of optimally assigning modules to processors, so

that the sum of maximum workloads at each stage is minimized. After formulation of this problem

as a multi-objective network optimization problem, two polynomially-bounded algorithms were

developed for the case of r = 2 stages. The general problem (for arbitrary r) was demonstrated to

be NP-hard. In order to solve large-scale problems, two heuristic procedures were developed

based on projecting an r-stage problem onto an efficiently solvable one-stage problem. Bounds on

the solution quality produced by the heuristic methods were obtained using a priori and a posteriori

information. Computational experience was presented with one of the exact algorithms, incorpor-

ating certain pruning rules and making use of a feasible solution produced by the sum-projection

heuristic. The empirical results demonstrate that the exact method, suitably refined, can solve

some reasonably large problems. For larger problems the sum-projection heuristic procedure

shows a good deal of promise, exemplified by its success in partitioning processors for an actual

fluid flow problem.

31

References

Berger, M. J. and J. Oliger. 1984. Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations. .1. Comput. Physics 53, 484-512.

Berman, 0., D. Einav and G. Handler. 1987. The Constrained Bottleneck Problem in Networks.
Technical Report, College of Management, University of Massachusetts, Boston, Mass.

Bokhari, S. H. Partitioning Problems in Parallel, Pipelined and Distributed Computing. 1988.
IEEE Trans. on Computers 37, 48-57.

Garey, M. R. and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, San Francisco.

Hansen, P. 1980. Bicriterion Path Problems. In Multiple Criteria Decision Making: Theory and
Application, G. Fandel and T. Gal (eds.). Springer-Verlag, Berlin, pp. 109-127.

Henig, M. 1985. The Shortest Path Problem with Two Objective Functions. Eur. J. Opns. Res.
25, 281-291.

Kalaba, R. 1964. Graph Theory and Automatic Control. In Applied Combinatorial Mathematics,
E. Beckenbach (ed.). Wiley, New York, pp. 237-252.

Kung, H. T., F. Luccio and F. P. Preparata. 1975. On Finding the Maxima of a Set of Vectors.
J. Assoc. Comput. Mach. 22, 469-476.

Nicol, D. 1988. Parallel Algorithms for Mapping Pipelined and Parallel Computations. ICASE
Technical Report 88-2, NASA, Langley Research Center, Hampton, Va.

O'1 lallaron. D. 1988. Computing the Cholesky Decomposition on the Warp Computer. 3rd
International Conference on Supercomputing, Vol. 2, pp. 396-401.

Warburton, A. 1985. Worst Case Analysis of Greedy and Related Heuristics for Some Min-Max
Combinatorial Optimization Problems. Math. Programming 33, 234-241.

Warburton, A. 1987. Approximation of Pareto Optima in Multiple-Objective, Shortest-Path
Problems. Opns. Res. 35, 70-79.

NASA Report Documentation Page
Rtrpoit No 2 Govurnment A(cesion No. 3 R.cip;,t't, C.jtlog No

NASA CR-181749

ICASE Report No. 88-57

4 T 'tt' i, ' H'-puI .I

A MULTISTAGE LIN!.AR ARRAY ASSIGNMENT November 1988
PROBLEM ; I'vitorIi, 0r(;anidttior Codc

7 ,thv 8. Performn q Organization Report No.

D. M. Nicol, D. R. Shier, R. K. Kincaid, 88-57

D. S. Richards ow0 ,orkU-nt No.

r - r'g Or j,,,zaor 'J and Address 505-90-21-01
Institute for Computer Applications in Science 11 Contract orGrantNo

and Engineering NASl-18107, NASI-18605,
Mail Stop 132C, NASA Langley Research Center AFOSR 88-0117

Hampton, VA 23665-5225 13. Type of Report and Period Covered
'2 Spofisc riq Agerrtv Name axa Addrebs

Contractor Report
National Aeronautics and Space Administration 14 Sponsoring Agency Code

Langley Research Center

Hampton, VA 23665-5225
15 S pplPmeitarv Notes

Langley Technical Monitor: Submitted to Operations Research
Richard W. Barnw-1l

Final Report
6 Absvr,

Implementatio of certain algorithms on parallel computing architecteres can
involve partitioning contiguous elements into a fixed number of groups, each of
which is to be handled by a single processor. It is desired to find an assignment

of elements to processors that minimizes the sum of the maximum workloads experi-
enced at each s!.ige. This problem can be viewed as a multi-objective network
optimization problem. Polynomially-bounded algorithms are developed for the case

of two-stages, whereas the associated decision problem (for an arbitrary number of
stages) is shown to be NP-complete. Heuristic procedures are therefore proposed
tnd analyzed for the general problem. Computational experience with one of the
exact problems, incorporating certain pruning rules, is presented for a variety of
test problems. Empirical results also demonstrate that one of the heuristic

procedures is especially effective in practice.

'17 Key Words ,Suggested -,y Authls', 18 Distribution Statement

assignment, heuristics, multi- 61 - Computer Programming and

objective, network, parallel algorithms, Software

workload balancing 66 - Systems Analysis
Unclassified - unlimited

19. Security Classif (of this ren,rti 20. Security Classif. (of this page) 21. No. of pages 22. Price

i1 A03

Unclassified I Unclassified 33 ,

NASA FORM 1626 OCT 86

